Answers exam Kwantumfysica 2, June 21, 2012

Exercise 1

{a) Explain what is the purpose or use of the addition of angular momentum and give the
definition of & “good” quantum number.

Addition of angular momentum is useful when individual angular momenta
are not conserved, i.e. when they are coupled. E.g. if the Hamiltonian conteins
a Ji - J» term, then [H, Ji.] # 0, in other words, d{J;)/dt # 0. Only the total
angular momentum (J = Ji + Ja) will be conserved in general. The purpose
is to obtain a C.5.C.0.

A “good”™ quantum number is an eigenvalue of a constant of motion. An
operator ( is a constent of motion if it satisfies [H, @] = 0 and 83/0¢ = 0.
The Hamiltonian and the constants of motion form a C.5.C.0. that can be
diagonalized simultaneously. Stationary states can then be labelled by mesans
of “good" quantum numbers in a time-independent way

(b) Use the table below to write down the Clebsch-Gordan decomposition of the state
i712jo; 5,m} = |2,1;1,0) in terms of the product states |f1,j2; 1, ma} and verify the
convention (i, 2101, 7 — jal5, 4} > 0.

Table 1: Clebsch-Gordan coefficients {7, 1;rny, ma|jm}

7 mg =1 mg =10 mg = —1
i+ 1 j1 ) (d1 ) 3 h=mA 1) (1 ek 1) 3 (G1—m}{d; —m+1) z
2 Llﬂ_l(zﬁﬂ ¢S 17_))7251»{1 e Eh+HIRE+2)

1
; _ | atmii—m4 L z m (1—m)(fi+m+1 ]E
1 (i F1) L Wi |

1

i1 1 =m) (i —m31) ] 3 _ [Gh=-m)Gitm) } 2 Gt | 2
h 25 (31+1) FXCIEEY ZH (% 1)

For the state |41, Je; 7,m) = |2,1;1,0), one has j = j; — 1, which means one
hag to use the bottom row of the table. This yields:

3 r 3
(2,01,0) = 4/ 15 2 L-11) = J‘IE|2,1,0,0)+ V152111

{c) In case of a constant, uniform external electric field one has to calculate the matrix
elements (nim|z[n'l'm’). Show that rotational invariance implies that for Am = m'—m #
0 these matrix elements vanish. Show that the behavior under parity transformations
demands that for even ! + ! these matrix elements vanish, Write down which matrix
elements are nonzero for n = 2,n' = 1.

In case of a constant, uniform external electric field taken along the z-axis,
the system is invariant under rotations eround the z-axis. One has [L,, 2] =0,
which implies

{nlm|[L,, z]|n'f'my =0 = Am{nlm|z|n'Tm} =0
Hence, for Am # 0; {almlzjn/i'm’)y = 0.

Under a parity transformation 7 = —#% tum — (=19, and z = -z
Hence,

(utmlalntr'y = [ P (oo
is only nonvanishing if (=1} = 1, i.e. when [ + I is odd.

For n = 2,n' =1, the only nonvanishing matrix element is then {210|z]100}.

(d) Expleln why 7 is not a good guantum number in case of a constant, uniform external
magnetic field and discuss what is the consequence for the time dependence of a state
that has a given J at ¢ = 07

In case of a constant, uniform external magnetic field along the z-axis, the
Zeeman term in the Hamiltonian is proportional to L. + 285,, which does
not commute with J2. Therefore, [H, J%] # 0, which means 7 is not a good
quantum number: This implies that d{J?)/dt # 0. A state of given j at t =0
may thus change into a mixture of states with different 7 values for ¢ > 0.

Exercise 2

(a) Construct the soluticns of the Schrdinger equation for the Infinite square well poten-

tial,
0 —e<s<a
Viw)= { oo elsewhere

and give the allowed energies.

Solutions of the Schrédinger equation can be written in the form Asin(kz) +
Bcos(kx). In this case they must satisfy 4f(+a) = 0, which leads to:

tn(z) = Asink,z, withk, = %, form=24,...,
¥n(z) = Beosk,z, with Fc,,=%, forn=1,8,....
The normalization is then A = B =1/./e. One could also have taken:

Yo(z) = Asink,(z — a), with &k, = z—z, forn=1,2,3,....

The sllowed energies are B, = h2k2/{2m) = hnr?/(8ma?).
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Next consider the case V() + Voix| for constant ¥ (see figure).

(b) Calculate in first order perturbation theory the correction to the ground state energy
dus to the addition of the potential Va|z| to V(z). Give the condition(s) for which this
perturbative result is valid.

Unperturbed ground state: gbio)(z) = (1/+/a) cos{mz/(2e)). The first order
correction to the ground state:
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Using for instance that 2 cos®{a) = 1-+cos(2er) and integrating by parts, yields:
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This 1esult is valid as long as 14 is small enough, such that the correction is
much smaller than E( )

2l

(c) Obtain an upper bound to the ground state energy for the potential V{z) - Vp|z| using
the following normalized trial function,

15

vr(z) =/ 15ur

(a® — 27),

and show that it is larger than the perturbative result. Argue whether this is expected
or not.

Although there is no parameter to vary, from the variational method we know
that for any trial wave function one obtaing an upper bound to the exact
ground state energy:

Plori = rlttlir) = [ vr(a) (- gy + Vle ) r(alin 2

A straightforward calculation yie.lds:r

which is larger than the perturbative result for all ¢ and vo. Since the pertur-
bative result is not the exact result, this was not necessarily expected.

(d) Give an example of & trial function that would give an upper bound on the first excited
state for V(z) + Vola|.

Only a trial function for the first excited state that is orthogonal to the true
ground state will yield an upper bound on the first excited state energy. Since
the true ground state is even under £ — —z, any odd trial function will do,
e.g or(z) ~ (0? — 2z,

(e) Obtain the first two leading terms in Vga/E for the allowed energies using the WKB
method, assuming the ground state energy F,, to be larger than Voa.
Recall that (1 —2)%/2 = 1 — 32/2 + 3a%/8 + ..

Since F,, > Vpa, one can use the WKB result: [ p dz = nrh, with p(z) =
v 2m(E - Wylz|).
f plz)dz = zf I =V = tvampE (1 (1- %)Y
— o 3 Vo E
Upon Teylor expanding one finds:
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which, upon taking the square and dropping the V§ term, yields:
272h? ~ 8ot (E - %Voﬂ:) )
ie.
8ma? | 2

a result that is larger than the first order perturbative result, but can be smaller
than the answer obtained with the trial function in (¢} if V; is small enough.



Exercise 3
Consider the Hamiltonian H = Ho + H, whele the states 1,&" % form an orthonormal set of
eigenstates of Hy with energies En , i.e. Hy "gb Enu) ¢ . H' is a perturbation acting

from time & = 0.

{a) Show that with the following expansion on the states 1&5‘0)
WO =3 el et BN,

the coefficients satisfy

o B -ED) B
i ﬁz ( )/
where H},, = ('4’)1(3) \H’\!ﬂw(tm)-
Plugging {f) into the Schrédinger equation dRdy{t)/di = (Ho +

H'(£))1(t) and taking the inner product with the state i) ((wﬁj\m[t)) =
cn(t) exp(—i E%t/R)) yields the answer.

(b) Consider the particular case of a two-level system consisting of states a and b, with
I = 8(1)V, where V is an findependent, t-independent potential. What is the proba-
bility that the system is in state b for ¢ > 0 if for ¢ < 0 it is in state o7

Since H’ does not couple the states o and b, i.e. H,, = 0, the probability to
be in state & for ¢ > 0 is zero. One can also celculate this explicitly by solving
the relevant exact equations:

iheg(t)
iRéy(1)

H:mCA(t):
Hje(t).

In this case both equations can be solved as follows:
dlncft)
dt

Under the boundary conditions e,(0) = 1,c{0) = 0, this yields [e.(£)] = 1
and les(t}{2 = 0, as expected.

—i8V/h = alt) =c0)exp(—iVi/h) forf=0.

(c) Derive the same probability in first-order time-dependent perturbation theory for an
f-dependent, -independant potential V.

Now H', # 0 in general, hence one has in first order perturbation theory (for
which {2} = dna):

. § (B _ g r (6) _ {0}
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This yields:

1 ¢ vt —2Vea i pim .
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Hence,
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e 2 sin{wget' /2).

{d} Show for the two cases in {b) and (c} whether the average energy s conserved or not.

For H = Ho +8(t)V:

Z lea(OPED +8(1 Zc () Vime™m

Case (b): {H)(i) = E® 4 0(£V,,, hence {H) 0, but only at £ = 0.

Case (c): thefe is an oscillation between states @ and b, so the average energy
is not conserved (note that this is not a question about the time-averaged
energy). '



